CHEMICAL MODIFICATION OF ERYTHROMYCINS

VI. STRUCTURE AND ANTIBACTERIAL ACTIVITY OF ACID DEGRADATION PRODUCTS OF 6-0-METHYLERYTHROMYCINS A

Shigeo Morimoto, Yoko Misawa, Toshifumi Asaka, Hideaki Kondoh and Yoshiaki Watanabe

Research Center, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Ohmiya-shi, Saitama 330, Japan

(Received for publication November 24, 1989)

Erythromycin A, a useful macrolide antibiotic, is extremely unstable to acid and when administered orally undergoes dehydration *in vivo* to anhydroerythromycin A, an inactive 6,9;9,12-spiroketal metabolite.¹⁾ In preceding paper,²⁾ we have reported that 6-O-methylerythromycin A (1) was more stable to acid than erythromycin A due to the presence of 6-O-methyl group, which blocks the formation of 6,9;9,12-spiroketal derivative.

Nevertheless, 1 loses gradually its antibacterial activity in dilute HCl solution. In present paper we describe the structure and antibacterial activity of the degradation products of 1 and its derivatives under acidic conditions.

When 1 was allowed to stand in aqueous acid solution (0.2% HCl or 9% AcOH), a cleavage of the cladinosyl moiety proceeded gradually to yield 3 which was also reported as one of metabolites of 1 in human or animals.^{3,4)} Treatment of 1 and 3 with glacial AcOH gave the conjugated enol ether 5 (67%) and 6 (71%), respectively. When heated at 70°C in AcOH-pyridine (1:3), erythromycin A provided pseudoerythromycin A derivatives *via* translactonization between the 11-hydroxyl group and the lactone group;⁵⁾ compound 1 yielded 5 under the same condition. Treatment of 1 with 1%

HCl-MeOH gave two isomers 6(25%) and 7(72%); 3 also gave both 6(41%) and 7(40%). 6,12-Di-O-methylerythromycin A $(2)^{6)}$, however, provided the decladinosyl derivative 4(75%)without dehydration in the aglycone ring.

Absence of the cladinose sugar in 3 was indicated by the absence of the corresponding absorptions in the ¹H and ¹³C NMR spectra and by the mass spectrum with m/z 590 (M+H). The ¹³C NMR spectrum of 3 also showed a δ value of 88.2 ppm for C-5 compared to 80.8 ppm in 1, suggesting the presence of hydrogen bonding of the oxygen at C-5 with the free hydroxyl group at C-3 (Table 1).

The ${}^{13}C$ NMR chemical shifts of 3 and 4 were essentially the same except for the presence of a new methoxy signal at 53.4 ppm in 4 with a significant

downfield shift of C-12 (δ_A + 4.9 ppm) compared to that of 3 (Table 1).

HREI-MS and elemental analysis of both **6** and 7 are in agreement with the empirical formula $C_{30}H_{51}NO_8$. Their UV spectra showed strong absorptions due to the conjugated diene structure at 274 (ε_{max} 12,400) and 277 nm (ε_{max} 12,500). The ¹H NMR spectrum of **6** showed a peak (δ 5.82) due to the olefinic proton 11-H and two peaks (δ 1.92 and 2.04) due to methyl groups attached to the conjugated double bonds which were assigned to

8-CH₃ and 10-CH₃, respectively. Similarly, the ¹H NMR spectrum of 7 showed peaks due to 11-H, 8-CH₃ and 10-CH₃ at δ 5.74, 1.73 and 2.03, respectively.

The both ¹³C NMR spectra of **6** and **7** showed resonances of four olefinic carbons attributed to C-8, C-9, C-10 and C-11 in the range of δ 101.4 to 154.5, with the downfield shifts of C-12 (δ_A +14.1 and +14.3 ppm in **6** and **7**, respectively) and 12-CH₃ (δ_A +8.5 and +6.7 ppm in **6** and **7**, respectively) compared to those of **3** (Table 1). In the NOE

Carbon -	Chemical shift $(\delta, ppm)^a$							
	1	3	4	5	6	7		
1	175.9	175.0	175.1	175.6	176.3	175.6		
2	45.1	44.5	44.7	45.5	44.2	45.0		
3	78.5	78.8	78.6	80.6	78.2	77.5		
4	39.3	37.4	36.3	39.3	37.4	37.7		
5	80.8	88.2	88.1	84.4	95.4	95.2		
6	78.5	78.0	78.8	81.4	82.5	81.7		
7	39.4	38.7	38.3	37.0	37.4	32.4		
8	45.3	45.4	45.0	102.8	101.4	104.1		
9	221.1	220.7	218.7	154.3	154.5	154.1		
10	37.3	35.8	38.9	135.6	134.7	134.7		
11	69.1	70.2	72.3	129.9	131.7	132.4		
12	74.3	74.2	79.1	87.7	88.3	88.5		
13	76.7	76.6	75.2	77.3	76.1	78.9		
14	21.1	21.3	21.7	24.6	23.6	23.8		
15	10.6	10.4	10.6	10.6	10.4	10.2		
2-CH ₃	16.0	15.1	15.3	15.7	15.2	16.0		
4-CH ₃	9.1	8.2	8.3	9.1	7.9	7.8		
6-CH ₃	19.8	18.7	19.0	25.8	20.1	21.1		
8-CH ₃	18.0	17.7	17.9	19.5	18.2	15.1		
10-CH ₃	12.3	12.6	11.5	16.7	16.6	16.6		
12-CH ₃	16.0	16.1	17.1	24.1	24.6	22.8		
6-OCH ₃	50.7	49.5	49.8	47.4	48.1	47.0		
12-OCH ₃		_	53.4					
1'	102.9	106.6	106.5	103.9	107.0	107.2		
2'	71.0	70.6	70.7	71.3	70.3	70.3		
3′	65.6	65.6	65.8	65.5	65.3	65.5		
4′	28.6	28.0	28.4	29.1	28.3	28.3		
5'	68.8	69.7	70.2	68.8	69.5	69.5		
$3' - N(CH_3)_2$	40.3	40.2	40.3	40.5	40.1	40.2		
5'-CH3	21.5	21.2	21.3	21.4	21.2	21.3		
1″	96.1			96.1				
2″	34.9			35.0				
3″	72.7			72.6				
4″	78.0			78.1				
5″	65.8			65.0				
3"-CH3	21.5			21.6				
5″-CH ₃	18.7			18.4				
3″-OCH ₃	49.5			49.4				

Table 1. ¹³C NMR chemical shifts of $3 \sim 7$.

^a Chemical shifts are in ppm downfield of TMS. ¹³C NMR spectra were taken in CDCl₃ on a Jeol JNM-GX 400 spectrometer. Assignments were determined by 2D NMR techniques.

Orrectioned	MIC	(µg/ml)	Orrenting	MIC (µg/ml)	
Organisms -	1	5	Organisms –	1	5
Bacillus subtilis ATCC 6633	0.05	0.78	S. epidermidis IID 866	0.10	1.56
Staphylococcus aureus 209P-JC	0.05	1.56	Enterococcus faecalis CSJ 1212	0.78	25
S. aureus Smith 4	0.10	3.13	Micrococcus luteus	0.025	0.39
S. aureus Terajima	0.10	3.13	ATCC 9341		
S. aureus BB	0.10	3.13	Branhamella catarrhalis	0.10	1.56
S. aureus CSJ 1923	0.10	3.13	ATCC 25238		
S. aureus J-109	>100	>100	Escherichia coli NIHJ JC-2	100	>100
S. aureus B1	>100	>100	E. coli CSJ 1922	100	>100
S. aureus Cl	0.78	25	E. coli K-12	12.5	>100

Table 2. In vitro antibacterial activity of acid degradation product (5) of 6-O-methylerythromycin A.

Medium: Sensitivity Test Agar (Eiken).

Inoculum size: 10⁶ cfu/ml.

difference spectra, strong NOE's were observed between 8-CH₃ and 10-CH₃ in **6**, and between 8-CH₃ and 5-H in **7**, establishing that the stereochemistry on the diene system for **6** and **7** was (8Z,10Z) and (8E,10Z), respectively. Further, the ¹³C NMR chemical shifts of **5** have been established as shown in Table 1, indicating that **5** differs from **6** in having the cladinose moiety at the C-3 position.

The antibacterial activity of $3 \sim 7$ was determined using the agar dilution method. Despite the pronounced structural change in the aglycone ring, 5 demonstrated activity 16 to 32-fold less potent than that of 1 (Table 2). On the other hand, the decladinosyl derivatives 4, 6 and 7 exhibited no activity against all strains tested (MIC > 100 μ g/ml), suggesting that the presence of cladinose moiety is indispensable for the antibacterial activity of erythromycin.

Experimental

5-O-Desosaminyl-6-O-methylerythronolide A (3)

A solution of $1^{2^{2}}(2 \text{ g}, 2.7 \text{ mmol})$ in 100 ml of 0.2% HCl was allowed to stand for 24 hours at ambient temperature. The reaction mixture was poured into satd Na₂CO₃ soln and extracted with CHCl₃. The CHCl₃ layer was washed with brine, dried (MgSO₄), and evaporated *in vacuo* to afford a foam (1.96 g). The product was purified by silica gel column chromatography (CHCl₃-MeOH, 15:1) and by crystallization from ether to give 1.1 g (70%) of **3** as colorless crystals: MP 237~240°C; IR (KBr) cm⁻¹ 1730, 1685; FAB-MS *m*/*z* 590 (M+H); ¹H NMR (200 MHz, CDCl₃), δ 2.97 (3H, s, 6-OCH₃), 2.27 (6H, s, N(CH₃)₂), 1.37 (3H, s, 6-CH₃); ¹³C NMR: See Table 1. $\frac{5-O-\text{Desosaminyl-6,12-di-}O-\text{methylerythronolide}}{A}$

A solution of 2^{6} (100 mg, 0.1 mmol) in 1% HCl-MeOH (1ml) was allowed to stand for 1 day at ambient temperature. The mixture was diluted with EtOAc and washed with satd Na₂CO₃ soln and water. The organic layer was dried (MgSO₄) and evaporated to dryness in vacuo. The residue was purified by silica gel column chromatography $(Me_2CO - hexane - triethylamine, 3:10:0.2)$ to give 59 mg (75%) of 4 which was crystallized from Me₂CO-hexane: MP 193~194°C; HREI-MS m/z603.3984 (M, calcd *m*/*z* for C₃₁H₅₇NO₁₀: 603.3982); IR (KBr) cm⁻¹ 3532, 1716, 1689; ¹H NMR (400 MHz, CDCl₃) & 3.45 (3H, s, 12-OCH₃), 3.00 (3H, s, 6-OCH₃), 2.36 (6H, s, N(CH₃)₂), 1.37 (3H, s, 6-CH₃), 1.16 (3H, s, 12-CH₃). ¹³C NMR: See Table 1.

(8Z,10Z)-8,9; 10,11-Dianhydro-6-*O*-methylerythromycin A 9,12-Hemiketal (5)

A solution of 1 (500 mg, 0.7 mmol) in glacial AcOH (2 ml) was allowed to stand for 4 days at ambient temperature. The reaction mixture was poured into water, basified (pH 10) using 2 N NaOH, and extracted with EtOAc. The EtOAc layer was washed with water, dried (MgSO₄), and evaporated *in vacuo*. The residue was purified by silica gel column chromatography (Me₂CO - hexane - triethylamine, 3:10:0.2) to give 320 mg (67%) of **5** as colorless foam: MP 123~127°C: FAB-MS *m/z* 712 (M+H); UV λ_{max}^{EtOH} nm (ε) 279 (10,500): IR (KBr) cm⁻¹ 3440, 1730, 1650, 1625; [α]_D²⁴ + 26.7° (*c* 0.27, EtOH); ¹H NMR (200 MHz, CDCl₃) δ 5.69 (1H, q, *J* = 1 Hz, 11-H), 3.28 (3H, s, 3"-OCH₃), 3.15 (3H, s, 6-OCH₃), 2.30 (6H, s, N(CH₃)₂), 2.05 (3H, s, 8-CH₃), 2.05 (3H, d, J=1 Hz, 10-CH₃), 1.32 (3H, s, 6-CH₃), 1.27 (3H, s, 12-CH₃). ¹³C NMR: See Table 1.

 $\frac{(8Z,10Z)-5-O-\text{Desosaminyl-}8,9;10,11-\text{dian-}}{\text{hydro-}6-O-\text{methylerythronolide A }9,12-\text{Hemiketal}}$ (6)

Compound **3** (3 g, 5 mmol) was treated with AcOH (30 ml) as described for **5** to give 2 g (71%) of **6** which was crystallized from EtOAc: MP 198~200°C; HREI-MS *m*/*z* 553.3628 (M, calcd *m*/*z* for C₃₀H₅₁NO₈: 553.3615); UV λ_{max}^{EtOH} nm (ε) 274 (12,400): IR (KBr) cm⁻¹ 3400, 1720, 1640, 1620; [α]₂²⁴ +71.6° (*c* 0.5, EtOH); ¹H NMR (400 MHz, CDCl₃) δ 5.82 (1H, q, *J*=1 Hz, 11-H), 3.17 (3H, s, 6-OCH₃), 2.27 (6H, s, N(CH₃)₂), 2.04 (3H, d, *J*=1 Hz, 10-CH₃), 1.92 (3H, s, 8-CH₃), 1.44 (3H, s, 6-CH₃), 1.27 (3H, s, 12-CH₃); ¹³C NMR: See Table 1. *Anal* Calcd for C₃₀H₅₁NO₈: C 65.07, H 9.28, N 2.53. Found: C 64.81, H 9.33, N 2.48.

(8E,10Z)-5-O-Desosaminyl-8,9; 10,11-dianhydro-6-O-methylerythronolide A 9,12-Hemiketal (7)

A solution of 3 (4 g, 6.8 mmol) in 1% HCl-MeOH (100 ml) was allowed to stand for 4 days at ambient temperature. One-half volume of MeOH was distilled off in vacuo and the resultant mixture was poured into water, basified (pH 10) using 2 N NaOH, and extracted with EtOAc. The EtOAc layer was washed with water, dried (MgSO₄), and evaporated to afford crystals. The resulting crystals were collected on a filter, washed with petroleum ether and crystallized from EtOAc to give 1.4g (37%) of 7 as colorless crystals. The filtrate and washing were combined and evaporated in vacuo. The residue was chromatographed over silica gel column with MeOH - CHCl₃ (3:97) to give 1.6 g (41%) of 6 and 0.1 g (3%) of 7. For compound 7: MP 224~226°C; HREI-MS m/z 553.3608 (M, calcd m/z for C₃₀H₅₁NO₈: 553.3615); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ε) 277 (12,500): IR (KBr) cm⁻¹ 3440, 1730, 1645, 1620; [α]_D²⁴ - 8.8° (*c* 0.5, EtOH); ¹H NMR (400 MHz, CDCl₃) δ 5.74 (1H, q, *J*=1 Hz, 11-H), 3.15 (3H, s, 6-OCH₃), 2.25 (6H, s, N(CH₃)₂), 2.03 (3H, d, *J*=1 Hz, 10-CH₃), 1.73 (3H, s, 8-CH₃), 1.31 (3H, s, 6-CH₃), 1.31 (3H, s, 12-CH₃); ¹³C NMR: See Table 1. *Anal* Calcd for C₃₀H₅₁NO₈; C 65.07, H 9.28, N 2.53. Found: C 64.95, H 9.46, N 2.53.

Acknowledgment

We would like to thank Dr. T. NAGATE, and Mr. T. ONO for providing microbiological data.

References

- LAZAREVSKI, T.; G. RADOBOLJA & S. DJOKIĆ: Erythromycin VI: Kinetics of acid-catalyzed hydrolysis of erythromycin oxime and erythromycylamine. J. Pharm. Sci. 67: 1031~1033, 1978
- MORIMOTO, S.; Y. TAKAHASHI, Y. WATANABE & S. Омика: Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J. Antibiotics 37: 187~189, 1984
- ADACHI, T.; S. MORIMOTO, Y. WATANABE & K. SOTA: Isolation and identification of metabolites of TE-031 (A-56268) in human urine. Chemotherapy (Tokyo) 36 (Suppl. 3): S-264~S-273, 1988
- SUWA, T.; H. YOSHIDA, S. YOSHITOMI & K. KAMEI: Metabolic fate of TE-031 (A-56268) (IV). Metabolism of ¹⁴C-TE-031 in rats and dogs. Chemotherapy (Tokyo) 36 (Suppl. 3): S-227~S-237, 1988
- KIBWAGE, I. O.; R. BUSSON, G. JANSSEN, J. HOOGMARTENS & H. VANDERHAEGHE: Translactonization in erythromycins. J. Org. Chem. 52: 990~996, 1987
- 6) MORIMOTO, S.; Y. MISAWA, T. ADACHI, T. NAGATE, Y. WATANABE & S. OMURA: Chemical modification of erythromycins. II. Synthesis and antibacterial activity of *O*-alkyl derivatives of erythromycin A. J. Antibiotics 43: 286~294, 1990